Линейная алгебра Системы линейных уравнений

Начала линейной алгебры

Вычисление обратной матрицы

Пусть A=(aij) – квадратная матрица с определителем, не равным нулю. Тогда существует обратная матрица A–1, которая вычисляется по формуле

 .

Последняя формула означает, что в i-й строке и j-м столбце обратной матрицы располагается алгебраическое дополнение элемента, стоящего в j-й строке и в i-м столбце исходной матрицы, деленное на определитель исходной матрицы.

Напомним здесь, что Apq=(–1)p+qMpq, где Mpq называется минором и представляет собой определитель, получающийся из определителя detA вычеркиванием p-й строки и q-го столбца.

Рассмотрим пример:

  detA=20+6–24=2;

  .

Еще раз подчеркнем, что обратная матрица существует только для квадратной матрицы с определителем, отличным от нуля!


Математика примеры решения задач