Колебания и волны Электромагнитные колебания. Оптика Ньютона

Методика решения задач по физике

Колебания и волны

Электромагнитные колебания.

Электрический колебательный контур. Формула Томсона.

Электромагнитные колебания могут возникать в цепи, содержащей индуктивность L и емкость C (рис.16.1). Такая цепь называется колебательным контуром. Возбудить колебания в таком контуре можно, например, предварительно зарядив конденсатор от внешнего источника напряжения, соединить его затем с катушкой индуктивности.

Рис.16.1. Электрический колебательный контур.

Поскольку внешнее напряжение к контуру не приложено, сумма падений напряжений на емкости и индуктивности должна быть равна нулю в любой момент времени:

откуда, учитывая, что сила тока , получаем дифференциальное уравнение свободных незатухающих колебаний электрического заряда в колебательном контуре 

.

 Если ввести обозначение

 ,

 то полученное уравнение принимает вид:

.

Решением этого уравнения, как известно, является функция

.

Таким образом, заряд на обкладках конденсатора изменяется по гармоническому закону с частотой ω0, называемой собственной частотой колебательного контура. Период колебаний определяется по формуле Томсона (Thomson W., 1824-1907):

Напряжение на конденсаторе:

,

где  - амплитуда напряжения.

Сила тока в контуре:

.

Сопоставляя полученные выражения, видим, что когда напряжение на конденсаторе, а значит энергия электрического поля, обращается в нуль, сила тока, а, следовательно, энергия магнитного поля, достигает максимального значения (рис.16.2). Таким образом, электрические колебания в контуре сопровождаются  взаимными превращениями энергий электрического и магнитного полей.

Рис.16.2. Графики изменения UC(t) и I(t) в LC-контуре.

Амплитуды тока Im и напряжения Um связаны между собой очевидным соотношением:

.

Свободные затухающие колебания. Добротность колебательного контура. Всякий реальный колебательный контур обладает сопротивлением. Энергия электрических колебаний в таком контуре постепенно расходуется на нагревание сопротивления, переходя в джоулево тепло, вследствие чего колебания затухают.

Вынужденные электрические колебания. Метод векторных диаграмм. Если в цепь электрического контура, содержащего емкость, индуктивность и сопротивление, включить источник переменной ЭДС, то в нем, наряду с собственными затухающими колебаниями, возникнут незатухающие вынужденные колебания. Частота этих колебаний совпадает с частотой изменения переменной ЭДС.

Резонансные явления в колебательном контуре. Резонанс напряжений и резонанс токов.

Общие свойства и характеристики волновых процессов. Волновое уравнение. Типы и характеристики волн. Процесс распространения колебаний в пространстве называется волновым процессом или просто волной. Волны различной природы (звуковые, упругие, электромагнитные) описываются сходными дифференциальными уравнениями в частных производных второго порядка по пространственно-временным переменным. Уравнение, описывающее волновой процесс, называется волновым уравнением, функция, которая удовлетворяет этому уравнению – волновой функцией.

Электромагнитные волны. Из уравнений Максвелла следует, что если возбудить с помощью зарядов  переменное электрическое или магнитное поле, в окружающем пространстве возникнет последовательность взаимных превращений электрического и магнитного полей, распространяющихся в виде электромагнитной волны. Для однородной нейтральной (ρ=0) и непроводящей () среды с постоянными проницаемостями ε и μ, волновое уравнение, описывающее электромагнитную волну, распадается на два независимых векторных уравнения соответственно для электрического  и магнитного полей:  , .


Энергия и импульс электромагнитной волны