Персональный компьютер - характеристики, логические основы, процессор и управление устройствами

История искусства
Экспрессионизм
Живопись перед первой мировой войной
Аналитический кубизм
Фантастическое искусство
Экспрессионизм
Поздний абстрактный экспрессионизм
Фотоискусство
Работы фотореалистов
Документальная фотография
Фотография XX века
Скульптура и архитектура 20 века
Сюрреализм
Скульптура после 1945 года
«Инсталляции» Джуди Пфафф
Архитектура XX века

Постмодернизм

Информатика
Персональный компьютер
Микросхемы памяти
Программное управление
Периферийные устройства
Видеосистемы
Монитор
Технические средства ЭВМ
Радиосвязь
Телефония
Цифро-аналоговое преобразование
Частотный спектр
Модуляторы
Конференц-связь
Процессор ПК
Шина адреса
Встроенный кэш
Основы сетевых ОС
Многозадачные ОС
вычислительные сети
Одноранговые сетевые ОС
Файловая система
Сервера
Управление ресурсами ПК
Файловая система
Корпоративная сеть
Домен
Клиент-сервер
Система Mach
DOS-технологии
Windows
LAN Server
UNIX
Novell NetWare
Сетевые продукты Microsoft
OS/2
Электронные усилители
Математика
Примеры контрольной работы
Типовик
Линейная алгебра
Найдём предел
Найдём вторую производную
Правила дифференцирования
Вычислим частные производные функции двух переменных
Разложим рациональную дробь
Вычислим односторонние производные
Найдём производную функции
Производные функции, заданной параметрически
Дифференциал функции
Определение производной
Производные гиперболических функций
Производная степенной функции
Дифференцирование и интегрирование рядов Фурье
Производная неявной функции
Производные высших порядков
Свойства производных
Физика
Методика решения задач
Термодинамика

Основные характеристики персонального компьютера

Первые электронные вычислительные машины (ЭВМ) появились всего лишь 50 лет тому назад. За это время микроэлектроника, вычислительная техника и вся индустрия информатики стали одними из основных составляющих мирового научно-технического прогресса. Влияние вычислительной техники на все сферы деятельности человека продолжает расширяться вширь и вглубь.

Одной из важнейших характеристик ЭВМ является ее быстродействие, которое характеризуется числом команд, выполняемых ЭВМ за одну секунду.

Другой важнейшей характеристикой ЭВМ является емкость запоминающих устройств. Емкость памяти измеряется количеством структурных единиц информации, которое может одновременно находиться в памяти. В настоящее время в мире произведены, работают и продолжают выпускаться миллионы вычислительных машин, относящихся к различным поколениям, типам, классам, отличающихся своими областями применения, техническими характеристиками и вычислительными возможностями.

Традиционно электронную вычислительную технику (ЭВТ) подразделяют на аналоговую и цифровую.

Академик В.М. Глушков указывал, что существуют три глобальные сферы деятельности человека, которые требуют использования качественно различных типов ЭВМ.

Первое направление является традиционным - применение ЭВМ для автоматизации вычислений

Вторая сфера применения ЭВМ связана с использованием их в системах управления.

Третье направление связано с применением ЭВМ для решения задач искусственного интеллекта.

Кроме перечисленных типов вычислительной техники, необходимо отметить класс вычислительных систем, получивший название “суперЭВМ” Основным принципом построения всех современных ЭВМ является программное управление. В основе его лежит представление алгоритма решения любой задачи в виде программы вычислений.

В любой ЭВМ имеются устройства ввода информации (УВв), с помощью которых пользователи вводят в ЭВМ программы решаемых задач и данные к ним.

АЛУ выполняет арифметические и логические операции над данными

Среди каналов ввода-вывода выделяли мультиплексные каналы, способные обслуживать большое количество медленно работающих устройств ввода-вывода (УВВ), и селекторные каналы, обслуживающие в многоканальных режимах скоростные внешние запоминающие устройства (ВЗУ).

Децентрализация управления предполагает иерархическую организацию структуры ЭВМ. Централизованное управление осуществляет устройство управления главного, или центрального, процессора

Электронные вычислительные машины являются универсальными техническими средствами автоматизации вычислительных работ, т.е. они способны решать любые задачи, связанные с преобразованием информации.

По мере развития вычислительной техники автоматизация этих этапов идет снизу-вверх

В настоящее время ПЭВМ являются самым массовым типом. Именно им отводится решающая роль при переходе общества к информатизации - наиболее полному использованию информационных технологий.

При широком применении ПЭВМ в различных сферах деятельности человека выдвигаются требования к их надлежащему программному обеспечению

Одной из основных характеристик ПК является тип используемого в нем микропроцессора.

Информационно-логические основы персонального компьютера

Системой счисления называется способ изображения чисел с помощью ограниченного набора символов, имеющих определенные количественные значения. Систему счисления образует совокупность правил и приемов представления чисел с помощью набора знаков (цифр) Целое число с основанием N1 переводится в систему счисления с основанием N2 путем последовательного деления числа An1, на основание N2 , записанного в виде числа с основанием N1, до получения остатка

В ЭВМ используются три вида чисел: с фиксированной точкой (запятой), с плавающей точкой (запятой) и двоично-десятичное представление. Точка (запятая) - это подразумеваемая граница целой и дробной частей числа.

Различные виды информации могут быть разделены на две группы: статические и динамические. Так, числовая, логическая и символьная информация является статической - ее значение не связано со временем.

Информация - это сведения об окружающем мире и протекающих в нем процессах, воспринимаемые человеком или специализированным устройством, например ЭВМ, для обеспечения целенаправленной деятельности.

Изображение может быть и в векторной форме

Все современные ЭВМ имеют достаточно развитую систему команд, включающую десятки и сотни машинных операций. Однако выполнение любой операции основано на использовании простейших микроопераций типа сложения и сдвиг. Прямой код двоичного числа образуется из абсолютного значения этого числа и кода знака (нуль или единица) перед его старшим числовым разрядом. Сложение (вычитание). Операция вычитания приводится к операции сложения путем преобразования чисел в обратный или дополнительный код

Пример Сложить два числа А10 = + 16 В10 = —7 в ОК и ДК.

Пример Сложить два числа А10=+1.375; B10=-0.625. Умножение двоичных чисел наиболее просто .реализуется в прямом коде. Рассмотрим, каким образом оно приводится к операциям сложения и сдвигам.

Операция умножения (деления) чисел с плавающей точкой также требует разных действий над порядками и мантиссами. Алгоритмы этих операций выполняются в следующей последовательности.

Основные сведения из алгебры логики

Теоретической основой построения ЭВМ являются специальные математические дисциплины.

Одной из них является алгебра логика или булева алгебра (Дж. Буль - английский математик прошлого столетия, основоположник этой дисциплины).

Закон поглощения

Проблема минимизации логических функций решается на основе применения законов склеивания и поглощения с последующим перебором получаемых дизъюнктивных форм и выбором из них оптимальной (минимальной).

По логическим выражениям проектируются схемы ЭВМ .

Классификация элементов и узлов ПК

При рассмотрении структуры любой ЭВМ обычно проводят ее детализацию. Как правило, в структуре ЭВМ выделяют следующие структурные единицы: устройства, узлы, блоки и элементы.

Комбинационные схемы - это схемы, у которых выходные сигналы Y = (у1, у2, ..., уm) в любой момент дискретного времени однозначно определяются совокупностью входных сигналов Х = (х1, х2,..., хn), поступающих в тот же момент времени t.

Схемы сравнения или компаратор обычно строятся как поразрядные. Они широко используются и автономно, и в составе более сложных схем, например при построении сумматоров.

Комбинационный сумматор. Принципы построения и работы сумматора вытекают из правил сложения двоичных цифр (п.2.3). Схема сумматора также является регулярной и широко используется в ЭВМ.

Структурная схема многоразрядного комбинационного сумматора

Более сложным преобразователем информации являются схемы с памятью. Наличие памяти в схеме позволяет запоминать промежуточные состояния обработки и учитывать их значения в дальнейших преобразованиях.

Пример Построить автомат намят - триггер, имеющий вход R (Reset - сброс) При построении ЭВМ широко используются функциональные схемы, обеспечивающие операции хранения и преобразования информации над группами битов (машинными словами). Такие сложные схемы называются узлами.

К типовым узлам относят : регистры, счетчики, сумматоры

Счетчик - узел ЭВМ, позволяющий осуществлять подсчет поступающих на его вход сигналов и фиксацию результата в виде многоразрядного двоичного числа.

Одним из главных факторов достижения высокого быстродействия, а значит, и высокой производительности ЭВМ является построение их на новейшей элементной базе.

Уменьшение линейных размеров микросхем и повышение уровня их интеграции заставляют проектировщиков искать средства борьбы с потребляемой Wn и рассеиваемой Wp мощностью

Функциональная структура организации персонального компьютера

Электронные вычислительные машины включают, кроме аппаратурной части и программного обеспечения (ПО), большое количество функциональных средств. ЭВМ представляет собой совокупность устройств, выполненных на больших интегральных схемах, каждая из которых имеет свое функциональное назначение.

Комплект интегральных схем, из которых состоит ЭВМ, называется микропроцессорным комплектом.

В каждом цикле, получив команду в регистр команд и выделив код операции, процессор определяет, к какому устройству она относится.

Организация процессов ввода, преобразования и отображения результатов относится к сфере системного программного обеспечения В некоторых операционных системах адреса откомпилированной (с 0 адреса) программы могут быть преобразованы в адреса реальной памяти, отличные от 0.

При этом создается абсолютный модуль, который требует размещения его в памяти всегда с одного и того же адреса.

Для выполнения программы при ее загрузке в основную память ей выделяется часть машинных ресурсов - они необходимы для размещения команд, данных, управляющих таблиц и областей ввода-вывода, т.е. производится трансляция адресного пространства откомпилированной программы в местоположение в реальной памяти.

При больших размерах реализуемых программ возникают некоторые противоречия при организации мультипрограммного режима работы, трудности динамического распределения ресурсов. Имея иерархическую структуру запоминающих устройств, на реальном объеме памяти, значительно меньшем максимального, можно имитировать работу с максимальной памятью. В этом случае программист работает так, как будто ему предоставлена реальная память максимально допустимого для данной ЭВМ объема, хотя имеющаяся реальная память значительно меньше по объему.

Такой режим работы называется режимом виртуальной памяти.

Современная ЭВМ представляет собой комплекс автономных устройств, каждое из которых выполняет свои функции под управлением местного устройства управления независимо от других устройств машины.

Принцип действия системы прерываний заключается в следующем

Центральный процессор ПК и управление внешними устройствами

Комплекс технических средств, реализующих функцию памяти, называется запоминающим устройством (ЗУ) Адресуемой единицей информации основной памяти IBM PC является байт. Это означает, что каждый байт, записанный в ОП, имеет уникальный номер (адрес).

Физически увеличить объем памяти несложно, для этого необходимо только подключить к системной магистрали дополнительные модули.

В IBM PC XT 20-битный адрес формировался из двух машинных слов: базового адреса сегмента (16 бит) и смещения (16 бит). Это было связано с тем, что вся ОП делилась на сегменты емкостью 64 Кбайта.

Все эти усовершенствования позволяют сделать персональную ЭВМ IBM PC мультипрограммной, многопользовательской (МП 80286 позволял работать с 10 терминалами; 80386 - с 60) и многозадачной.

В персональных ЭВМ нашли применение не только микропроцессоры фирмы Intel. Крупнейшими производителями аналогов микропроцессорам Intel (клонов) являются фирмы Cyrix и AMD.

Работой МП управляет программа, записанная в ОП ЭВМ. Адрес очередной команды хранится в счетчике команд IP (Instruction Pointer) и в одном из сегментных регистров, чаще всего в CS.

Каждый обработчик прерываний BIOS и DOS может выполнять несколько различных функций. В команде INT никак не определяется, какую именно функцию должен выполнить обработчик прерываний

Вычислительные машины, помимо процессоров и основной памяти (образующих ее ядро), содержат многочисленные периферийные устройства (ПУ): ВЗУ и УВВ.Интерфейсы межмашинного обмена обычно последовательные, в которых обмен информацией производится по одному биту последовательно.

Необходимость вывода информации различными шрифтами привела к изменению технологии вывода, связанной с применением ТrueТуре-шрифтов, масштабированием матричных и векторных изображений, преобразованием векторных символов в матричные.

Регистр режима определяет режим работы канала Для подключения жестких магнитных дисков к микропроцессорному комплекту используется один из 5 типов интерфейсов

Связь двух ЭВМ и внешнего устройства или двух ЭВМ друг с другом может быть организована в трех режимах: симплексном, полудуплексном и дуплексном.

Сопряжение ЭВМ с каналом связи осуществляется с помощью последовательного (RS-232) или параллельного (Centronics) интерфейса, каждый из которых может обеспечить работу сопрягаемых устройств в любом из рассмотренных режимов - все зависит от типа используемого канала связи и технологии его использования

В состав микропроцессорного комплекта входит большая интегральная схема УСАПП (универсальный синхронно-асинхронный приемопередатчик) или UART (Universal Asynchronous Receiver Transmitter), предназначенная для реализации интерфейса типа RS-232 (V24).

Старт-бит всегда имеет единичное значение, отличное от состояния "молчащего" канала

Видеосистемы предназначены для оперативного отображения информации, доведения ее до сведения оператора ЭВМ. Обычно они состоят из двух частей: монитора и адаптера. Монитор служит для визуализации изображения, адаптер — для связи монитора с микропроцессорным комплектом. По длительности хранения информации на экране мониторы делятся на регенерируемые и запоминающие.

Связь ЭВМ с монитором осуществляется с помощью адаптера - устройства, которое должно обеспечивать совместимость различных мониторов с микропроцессорным комплектом ЭВМ.

Видеографический матричный адаптер VGA, разработанный в 1988 г., позволял реализовать 640*480 точек в графическом режиме при 64-256 (зависит от объема видеопамяти) одновременно отображаемых цветах из 262 144 возможных

Клавиатура - это одно из основных устройств ввода информации в ЭВМ, позволяющее вводить различные виды информации

Общее число клавиш в основной модификации клавиатуры - 83, в расширенной клавиатуре - до 101

Принтер - это внешнее устройство ЭВМ, предназначенное для вывода информации на твердый носитель в символьном или графическом виде.

По способу регистрации изображения ПУ делятся на ударные и безударные. Сканер - это внешнее устройство ПЭВМ, позволяющее вводить двухмерное (т.е. плоское) изображение.

Считывание линейкой фотоэлементов заключается в том, что изображение освещается полоской света, а отраженный свет падает на фотоэлементы, смонтированные в виде линейки

Распознающее устройство типа “перцептрон” имеет матрицу фотоэлементов (Аi), суммирующие блоки (Sj ) и решающие элементы (К1)

Конструктивно сканеры выпускаются в двух вариантах: портативные и настольные.

Необходимость использования специализированных технических средств для компьютерной графики и анимации (т.е. воспроизведения движущихся изображений) объясняется высокими требованиями к системам отображения информации, к качеству воспроизводимого изображения

В состав анимационных устройств ввода-вывода входят видеокамера, видеомагнитофон и телевизор, а также преобразователи видеосигналов. Видеокамера представляет собой устройство, преобразующее визуальное изображение в аналоговые электрические сигналы.

Видеомагнитофон - это устройство, воспринимающее высокочастотный телевизионный сигнал для записи его на магнитную ленту

Помимо приема, записи и считывания видеоинформации, видеомагнитофоны могут выполнять дополнительные функции, что расширяет возможности их использования и позволяет реализовать различные видеоэффекты.

В телевидении используется только динамическая видеоинформация

Особое место в системах мультимедиа занимает использование аудиоаппаратуры для речевого общения.

В настоящее время практически отсутствуют устройства для ввода динамически развивающихся звуковых сцен. Устройства ввода и программы-анализаторы не позволяют выделить эмоциональную составляющую речи, которая значительно корректирует смысл (и может даже изменить его до противоположного).

Для работы со звуковой информацией необходимо соответствующее программное обеспечение: музыкальные редакторы, “говорящие машины”, речевые и аудиоредакторы.

Музыкальные редакторы предоставляют для начала работы блоки, более крупные, чем отдельные ноты.

Системы мультимедиа начинались со звука, который воспринимается независимо от изображения, не наносит ущерба восприятию выводимой на экран информации, а при хорошем качестве даже дополняет ее и повышает восприимчивость пользователя, оказывает сильное психологическое воздействие на оператора, создает настроение

Физические основы генерации компьютерного звука

Синусоидальные сигналы в ЭВМ можно получить только с помощью специальных устройств - аудиоплат. Аналого-цифровое преобразование на основе спектрального анализа заключается в том, что звуковые колебания сложной формы раскладываются на ряд гармоник.

Частоты и амплитуды, характеризующие гармонические составляющие аудиосигнала, и являются оцифрованным звуком.

Модуль интерфейсов внешних устройств может включать в себя интерфейс для подключения CD ROM, игровой порт и др.

Внешние запоминающие устройства (ВЗУ)

В качестве внешней памяти ПЭВМ используются накопители на магнитных дисках (НМД), накопители на магнитных лентах (НМЛ) - стриммеры и оптические ЗУ.

Объем хранимой на дискете информации зависит как от конструкции дискеты, так и от способа размещения информации на ней.

Логическое форматирование заключается в оформлении диска соответственно стандартам операционной системы. Цель логического форматирования - создание на диске управляющих таблиц для учета использования имеющихся ресурсов.

Программа начальной загрузки, содержащаяся в ВООТ-секторе, предназначена для считывания с системной дискеты резидентных файлов MSDOS и командного процессора и размещения их в ОП.

Корневой каталог диска содержит информацию о файлах и подкаталогах, размещенных на диске.

Накопитель на жестком магнитном диске (НМД) имеет тот же принцип действия, что и НГМД, но отличается тем, что в нем магнитный носитель информации является несъемным и состоит из нескольких пластин, закреплённых на общей оси (пакета магнитных носителей).

Жесткие диски делают герметичными - малое расстояние (зазор) между рабочей поверхностью и магнитной головкой должно быть защищено от пылинок, чтобы уберечь тонкий напыленный слой кобальта от стирания.

Стриммером называется внешнее устройство ПЭВМ для записи и воспроизведения цифровой информации на кассету с магнитной лентой. Основное их назначение - архивирование редко используемых больших массивов информации, резервное копирование.

Компакт-диск СDROM (Compact Disk - Read Only Memory) содержит информацию только в цифровом виде

Программное обеспечение

Программное обеспечение ЭВМ разделяют на общее, или системное (general Software),и специальное, или прикладное (application or special Software) Общее ПО включает в свой состав операционную систему (ОС), средства автоматизации программирования (САП), комплекс программ технического обслуживания (КПТО), пакеты программ, дополняющие возможности ОС (ППос), и систему документации (СД).

Центральное место в структуре ПО занимает операционная система. Она представляет собой систему программ, предназначенную для обеспечения определенного уровня эффективности цифровой вычислительной системы за счет автоматизированного управления ее работой и предоставляемого пользователям набора услуг

Основу любой ОС составляет управляющая программа, основными функциями которой являются: управление заданиями, управление задачами - управление ходом выполнения отдельных программ, и управление данными.

К системам (или средствам) автоматизации программирования (САП) относят языки программирования, языковые трансляторы, редакторы, средства отладки и другие вспомогательные программы.

Из процедурно-ориентированных языков широко известны языки Фортран, Алгол, Кобол, Basic, Pascal, Ада, Си и др.

Спектр языков этой группы очень широк, и среди них существует определенная иерархия ЭВМ имеются две группы пакетов программ: пакеты прикладных программ и пакеты, дополняющие возможности С (ППос).

Другие редакторы - редакторы широкого назначения, обычно используются автономно.

Различные формы многопрограммных (мультипрограммных) режимов работы различаются в основном значимостью различного рода ресурсов и правилами перехода от обслуживания одной программы пользователя к другой.

Вычислительные системы

Под вычислительной системой (ВС) будем понимать совокупность взаимосвязанных и взаимодействующих процессоров или ЭВМ, периферийного оборудования и программного обеспечения, предназначенную для подготовки и решения задач пользователей. Большое разнообразие структур ВС затрудняет их изучение. Поэтому их классифицируют с учетом их обобщенных характеристик.

С этой целью вводится понятие архитектура системы.

Архитектура ОКОД охватывает все однопроцессорные и одномашинные варианты систем, т.е. с одним вычислителем. Все ЭВМ классической структуры попадают в этот класс.

Для построения вычислительных систем необходимо, чтобы элементы или модули, комплексируемые в систему, были совместимы. Понятие совместимости имеет три аспекта: аппаратурный, или технический, программный и информационный.

Уровень прямого управления служит для передачи коротких однобайтовых приказов-сообщений. Последовательность взаимодействия процессоров сводится к следующему.

С момента появления первых систем было опробовано большое количество разнообразных структур систем, отличающихся друг от друга различными техническими решениями. Практика показала, что каждая структура вычислительной системы эффективно обрабатывает лишь задачи определенного класса.

МКМД-структуры являются наиболее интересным классом структур вычислительных систем

Методика решения задач по физике, математике, информатике