Информатика операционные системы

Репликация

Распределенные системы часто обеспечивают репликацию (тиражирование) файлов в качестве одной из услуг, предоставляемых клиентам. Репликация - это асинхронный перенос изменений данных исходной файловой системы в файловые системы, принадлежащие различным узлам распределенной файловой системы. Другими словами, система оперирует несколькими копиями файлов, причем каждая копия находится на отдельном файловом сервере. Имеется несколько причин для предоставления этого сервиса, главными из которых являются:

1. Увеличение надежности за счет наличия независимых копий каждого файла на разных файл-серверах.

2. Распределение нагрузки между несколькими серверами.

Как обычно, ключевым вопросом, связанным с репликацией является прозрачность. До какой степени пользователи должны быть в курсе того, что некоторые файлы реплицируются? Должны ли они играть какую-либо роль в процессе репликации или репликация должна выполняться полностью автоматически? В одних системах пользователи полностью вовлечены в этот процесс, в других система все делает без их ведома. В последнем случае говорят, что система репликационно прозрачна.

На рисунке 3.12 показаны три возможных способа репликации. При использовании первого способа (а) программист сам управляет всем процессом репликации. Когда процесс создает файл, он делает это на одном определенном сервере. Затем, если пожелает, он может сделать дополнительные копии на других серверах. Если сервер каталогов разрешает сделать несколько копий файла, то сетевые адреса всех копий могут быть ассоциированы с именем файла, как показано на рисунке снизу, и когда имя найдено, это означает, что найдены все копии. Чтобы сделать концепцию репликации более понятной, рассмотрим, как может быть реализована репликация в системах, основанных на удаленном монтировании, типа UNIX. Предположим, что рабочий каталог программиста имеет имя /machine1/usr/ast. После создания файла, например, /machine1/usr/ast/xyz, программист, процесс или библиотека могут использовать команду копирования для того, чтобы сделать копии /machine2/usr/ast/xyz и machine3/usr/ast/xyz. Возможно программа использует в качестве аргумента строку /usr/ast/xyz и последовательно попытается открывать копии, пока не достигнет успеха. Эта схема хотя и работает, но имеет много недостатков, и по этим причинам ее не стоит использовать в распределенных системах.

На рисунке 3.12,б показан альтернативный подход - ленивая репликация. Здесь создается только одна копия каждого файла на некотором сервере. Позже сервер сам автоматически выполнит репликации на другие серверы без участия программиста. Эта система должна быть достаточно быстрой для того, чтобы обновлять все эти копии, если потребуется.

Последним рассмотрим метод, использующий групповые связи (рисунок 3.12,в). В этом методе все системные вызовы ЗАПИСАТЬ передаются одновременно на все серверы, таким образом копии создаются одновременно с созданием оригинала. Имеется два принципиальных различия в использовании групповых связей и ленивой репликации. Во-первых, при ленивой репликации адресуется один сервер, а не группа. Во-вторых, ленивая репликация происходит в фоновом режиме, когда сервер имеет промежуток свободного времени, а при групповой репликации все копии создаются в одно и то же время.

Рис. 3.12. а) Точная репликация файла; б) Ленивая репликация файла;
в) Репликация файла, использующая группу

Рассмотрим, как могут быть изменены существующие реплицированные файлы. Существует два хорошо известных алгоритма решения этой проблемы.

Первый алгоритм, называемый "репликация первой копии", требует, чтобы один сервер был выделен как первичный. Остальные серверы являются вторичными. Когда реплицированный файл модифицируется, изменение посылается на первичный сервер, который выполняет изменения локально, а затем посылает изменения на вторичные серверы.

Чтобы предотвратить ситуацию, когда из-за отказа первичный сервер не успевает оповестить об изменениях все вторичные серверы, изменения должны быть сохранены в постоянном запоминающем устройстве еще до изменения первичной копии. В этом случае после перезагрузки сервера есть возможность сделать проверку, не проводились ли какие-нибудь обновления в момент краха. Недостаток этого алгоритма типичен для централизованных систем - пониженная надежность. Чтобы избежать его, используется метод, предложенный Гиффордом и известный как "голосование". Пусть имеется n копий, тогда изменения должны быть внесены в любые W копий. При этом серверы, на которых хранятся копии, должны отслеживать порядковые номера их версий. В случае, когда какой-либо сервер выполняет операцию чтения, он обращается с запросом к любым R серверам. Если R+W > n, то, хотя бы один сервер содержит последнюю версию, которую можно определить по максимальному номеру.

Интересной модификацией этого алгоритма является алгоритм "голосования с приведениями". В большинстве приложений операции чтения встречаются гораздо чаще, чем операции записи, поэтому R обычно делают небольшим, а W - близким к N. При этом выход из строя нескольких серверов приводит к отсутствию кворума для записи. Голосование с приведениями решает эту проблему путем создания фиктивного сервера без дисков для каждого отказавшего или отключенного сервера. Фиктивный сервер не участвует в кворуме чтения (прежде всего, у него нет файлов), но он может присоединиться к кворуму записи, причем он просто записывает в никуда передаваемый ему файл. Запись только тогда успешна, когда хотя бы один сервер настоящий.

Когда отказавший сервер перезапускается, то он должен получить кворум чтения для обнаружения последней версии, которую он копирует к себе перед тем, как начать обычные операции. В остальном этот алгоритм подобен основному.

Информатика операционные системы

Персональный компьютер Основы сетевых ОС операционных систем Методы распределения памяти Файловая система права доступа к файлу UNIX