Решение типового варианта контрольной работы

Методические указания и решения задач самостоятельной расчетно-графической работы.

Задача №1. Даны три последовательные вершины параллелограмма А(2;-3), В(5;1),С(3;-4). Н

Составить уравнение плоскости, проходящей через точки , , .

Задача №3. К кривым второго порядка относятся эллипс, гипербола, парабола

Пример 1. Привести уравнение кривой второго порядка к каноническому виду и построить кривую.

Задача №5. Построить на плоскости геометрическое место точек, определяемое неравенствами

Задание 1.

1.

а) 

Анализ задачи.

Подставив значение  в числитель и знаменатель

,

 мы имеем неопределенность , но преобразованиями данной дроби освободимся от неопределенности. Для этого числитель и знаменатель разделим на одно и то же ненулевое число , от этого значение дроби не изменится.

Следовательно:

Ответ:  .

б) 

Анализ задачи:

Отсюда видно, что непосредственное применение теорем о пределах привело к неопределенности , для раскрытия неопределенности надо опять провести тождественное преобразование для многочленов, стоящих в числителе и знаменателе данного предела. Т.к. (конечному значению), то надо разложить на множители числитель и знаменатель по формуле

Находим корни уравнения

;

.

Значит, .

Аналогично решаем

.

Отсюда,

Данный предел

  в точке  – непрерывна, то, подставив  в нее, получим ответ .

Ответ:  .

в) 

Решение:

Решение привело к формуле второго замечательного предела , где

при   , а .

Ответ: .

Можно решение выполнить следующим образом.

Замена переменной , при  , т.е. .

Найдем x из подстановки .

Значит,

Использовали формулу второго замечательного предела в виде:

Ответ: .


Примеры решения типового по математике